4 years ago

Active Antioxidizing Particles for On-Demand Pressure-Driven Molecular Release

Active Antioxidizing Particles for On-Demand Pressure-Driven Molecular Release
Martha U. Gillette, Jye Yng Teo, Hyunjoon Kong, Jennifer W. Mitchell, Jiayu Leong, Jonghwi Lee, Bumsoo Han, Yongbeom Seo
Overproduced reactive oxygen species (ROS) are closely related to various health problems including inflammation, infection, and cancer. Abnormally high ROS levels can cause serious oxidative damage to biomolecules, cells, and tissues. A series of nano- or microsized particles has been developed to reduce the oxidative stress level by delivering antioxidant drugs. However, most systems are often plagued by slow molecular discharge, driven by diffusion. Herein, this study demonstrates the polymeric particles whose internal pressure can increase upon exposure to H2O2, one of the ROS, and in turn, discharge antioxidants actively. The on-demand pressurized particles are assembled by simultaneously encapsulating water-dispersible manganese oxide (MnO2) nanosheets and green tea derived epigallocatechin gallate (EGCG) molecules into a poly(lactic-co-glycolic acid) (PLGA) spherical shell. In the presence of H2O2, the MnO2 nanosheets in the PLGA particle generate oxygen gas by decomposing H2O2 and increase the internal pressure. The pressurized PLGA particles release antioxidative EGCG actively and, in turn, protect vascular and brain tissues from oxidative damage more effectively than the particles without MnO2 nanosheets. This H2O2 responsive, self-pressurizing particle system would be useful to deliver a wide array of molecular cargos in response to the oxidation level.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b12297

DOI: 10.1021/acsami.7b12297

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.