3 years ago

Enhanced Electrorheological Performance of Mixed Silica Nanomaterial Geometry

Enhanced Electrorheological Performance of Mixed Silica Nanomaterial Geometry
Kisu Lee, Jungchul Noh, Jungwon Kim, Jyongsik Jang, Yoonsun Jang, Chang-Min Yoon
The mixed geometrical effect on the electrorheological (ER) activity of bimodal ER fluids was investigated by mixing SiO2 spheres and rods of different dimensions. To gain an in-depth understanding of the mixed geometrical effect, 12 bimodal ER fluids were prepared from 4 sizes of SiO2 spheres (50, 100, 150, and 350 nm) and 3 types of SiO2 rods with different aspect ratios (L/D = 2, 3, and 5). Five concentrations of SiO2 spheres and rods were created for each bimodal ER fluid, resulting in a total of 60 sets of comprehensive ER measurements. Some bimodal ER fluids exhibited enhanced ER performance, as high as 23.0%, compared to single SiO2 rod-based ER fluids to reveal the mixed geometrical effect of bimodal ER fluids. This interesting experimental result is based on the structural reinforcement provided by spheres to fibrillated rod materials, demonstrating the mixed geometrical effect on ER activity.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b08298

DOI: 10.1021/acsami.7b08298

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.