4 years ago

Stabilizing the Ag Electrode and Reducing J–V Hysteresis through Suppression of Iodide Migration in Perovskite Solar Cells

Stabilizing the Ag Electrode and Reducing J–V Hysteresis through Suppression of Iodide Migration in Perovskite Solar Cells
Nam-Gyu Park, Donghwa Lee, Jiangzhao Chen
Hysteresis and stability issues in perovskite solar cell (PSCs) hinder their commercialization. Here, we report an effective and reproducible approach for enhancing the stability of and suppressing the hysteresis in PSCs by incorporating a small quantity of two-dimensional (2D) PEA2PbI4 [PEA = C6H5(CH2)2NH3] in three-dimensional (3D) MAPbI3 [MA = CH3NH3 ] [denoted as (PEA2PbI4)x(MAPbI3)], where the perovskite films were fabricated by the Lewis acid–base adduct method. A nanolaminate structure comprising layered MAPbI3 nanobricks was created in the presence of 2D PEA2PbI4. For x = 0.017, a power conversion efficiency (PCE) of as high as 19.8% was achieved, which was comparable to the 20.0% PCE of a MAPbI3-based cell. Density functional theory (DFT) calculations confirmed that iodide migration was suppressed in the presence of the 2D perovskite as a result of a higher activation energy, which was responsible for the significant reduction in hysteresis and the improved chemical stability against a Ag electrode as compared to the corresponding characteristics of its pristine MAPbI3 counterpart. An unencapsulated MAPbI3-based device retained less than 55% of its initial PCE in a 35-day aging test, whereas a (PEA2PbI4)0.017(MAPbI3)-based device without encapsulation exhibited a promising long-term stability, retaining over 90% of its initial PCE after 42 days.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b07595

DOI: 10.1021/acsami.7b07595

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.