5 years ago

Manipulating the Bulk Band Structure of Artificially Constructed van der Waals Chalcogenide Heterostructures

Manipulating the Bulk Band Structure of Artificially Constructed van der Waals Chalcogenide Heterostructures
Alexander V. Kolobov, Yuta Saito, Paul Fons, Junji Tominaga, Kotaro Makino
The bulk band structures of a variety of artificially constructed van der Waals chalcogenide heterostructures IVTe/V2VI3 (IV: C, Si, Ge, Sn, Pb; V: As, Sb, Bi; VI: S, Se, Te) have been systematically examined using ab initio simulations based on density functional theory. The crystal structure and the electronic band structure of the heterostructures were found to strongly depend on the choice of elements as well as the presence of van der Waals corrections. Furthermore, it was found that the use of the modified Becke–Johnson local density approximation functional demonstrated that a Dirac cone is formed when tensile stress is applied to a GeTe/Sb2Te3 heterostructure, and the band gap can be controlled by tuning the stress. Based on these simulation results, a novel electrical switching device using a chalcogenide heterostructure is proposed.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b04450

DOI: 10.1021/acsami.7b04450

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.