4 years ago

Multifunctional Gene Carriers with Enhanced Specific Penetration and Nucleus Accumulation to Promote Neovascularization of HUVECs in Vivo

Multifunctional Gene Carriers with Enhanced Specific Penetration and Nucleus Accumulation to Promote Neovascularization of HUVECs in Vivo
Wencheng Zhang, Jintang Guo, Xuefang Hao, Xiangkui Ren, Yakai Feng, Changcan Shi, Qian Li
Recently, gene therapy has attracted much attention, especially for the treatment of vascular disease. However, it is still challenging to develop the gene carriers with high biocompatibility as well as highly efficient gene delivery to overcome multiple barriers. Herein, a frequently used cell-penetrating peptide PKKKRKV (TAT) was selected as a functional sequence of the gene carrier with distinctive cell-penetrating ability. REDV peptide with selectively targeting function for endothelial cells (ECs) and nuclear localization signals (NLS) were integrated with this TAT peptide to obtain a highly efficient gene delivery system with ECs specificity and nucleus accumulation capacity. Besides, the glycine sequences with different repeat numbers were inserted into the above integrated peptide. These glycine sequences acted as a flexible spacer arm to exert the targeting, cell-penetrating, and nucleus accumulation functions of each functional peptide. Three tandem peptides REDV-Gm-TAT-Gm-NLS (m = 0, 1, and 4) complexed with pZNF580 plasmid to form gene complexes. The results of hemocompatibility and cytocompatibility indicated that these peptides and gene complexes were nontoxic and biocompatible. The internalization efficiency and mechanism of these gene complexes were investigated. The internalization efficiency was improved as the introduction of targeting REDV and glycine sequence, and the REDV-G4-TAT-G4-NLS/pZNF580 (TP-G4/pZNF580) complexes showed the highest cellular uptake among the gene complexes. The TP-G4/pZNF580 complexes also presented significantly higher internalization efficiency (∼1.36 times) in human umbilical vein endothelial cells (HUVECs) than human umbilical artery smooth muscle cells. TP-G4/pZNF580 complexes substantially promoted the expression of pZNF580 by confocal live cell imaging, gene delivery efficiency, and HUVECs migration assay. The in vitro and in vivo revascularization ability of transfected HUVECs was further enhanced obviously. In conclusion, these multifunctional REDV-Gm-TAT-Gm-NLS peptides offer a promising and efficacious delivery option for neovascularization to treat vascular diseases.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b11615

DOI: 10.1021/acsami.7b11615

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.