5 years ago

Interfacial Antiferromagnetic Coupling and Dual-Exchange Bias in Tetragonal SrRuO3–PrMnO3 Superlattices

Interfacial Antiferromagnetic Coupling and Dual-Exchange Bias in Tetragonal SrRuO3–PrMnO3 Superlattices
Prahallad Padhan, Antarjami Sahoo, Wilfrid Prellier
The functional properties of oxide heterostructures depend on the interfaces accommodating ions, their spins, and structural mismatches. Here, by stabilizing tetragonal symmetry, we achieve the in-plane antiferromagnetic (AFM) ordering and dual-exchange bias in the superlattices consisting of two ferromagnets SrRuO3 (SRO) and PrMnO3 (PMO). The tetragonal symmetry of this superlattice system achieved after the octahedral rotations yield an elongation of the c-axis parameter with Ru–O–Mn bond angle close to 180°, induces an interfacial antiferromagnetic ordering, which is suppressed as the ferromagnetic (FM) ordering in the PMO layer increases. The 0.1 T in-plane cooling field (Hcool) leads to the shift (ca. −0.04 T) of minor hysteresis loop along the negative field axis due to the presence of −0.87 erg/cm2 AFM interfacial exchange coupling energy density (ERu,Mn) at 20 K. The exchange bias field (HEB) switches from negative to positive value with the increase in Hcool. For 5 T Hcool, the HEB is positive, but the ERu,Mn is −1.25 erg/cm2 for n ≤ 8 (n = number of unit cells of PMO) and 1.52 erg/cm2 for n ≥ 8. The HEB and its switching from negative to positive with the increase in Hcool are explained by the interplay of strong antiferromagnetic coupling energy and Zeeman energy at the interfaces. The results demonstrate that the SRO–PMO superlattice could be a model system for the investigation of the interfacial exchange coupling in functional oxides.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b11930

DOI: 10.1021/acsami.7b11930

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.