5 years ago

Electric Field Manipulated Multilevel Magnetic States Storage in FePt/(011) PMN-PT Heterostructure

Electric Field Manipulated Multilevel Magnetic States Storage in FePt/(011) PMN-PT Heterostructure
Youwei Du, Bo Yang, Qingqi Cao, Zhenghong Qian, Huachen Zhu, Dunhui Wang, Xiaoyu Zhao, Jiahong Wen
In the current information society, the realization of a magnetic storage technique with energy-efficient design and high storage density is greatly desirable. Here, we demonstrate that, without bias magnetic field, different values of remanent magnetization (Mr) can be obtained in a FePt/0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-PT) heterostructure by applying a unipolar electric field across the substrate. These multilevel magnetic signals can serve as writing data bits in a storage device, which remarkably increases the storage density. As for the data reading, these multilevel Mr values can be read nondestructively and distinguishably using a commercial giant magnetoresistance magnetic sensor by converting the magnetic signal to voltage signal. Furthermore, these multilevel voltage signals show good retention and switching property, which enables promising applications in electric-writing magnetic-reading memory devices with low power consumption and high storage density.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b11015

DOI: 10.1021/acsami.7b11015

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.