3 years ago

Effect of Concentration on the Electrochemistry and Speciation of the Magnesium Aluminum Chloride Complex Electrolyte Solution

Effect of Concentration on the Electrochemistry and Speciation of the Magnesium Aluminum Chloride Complex Electrolyte Solution
Yao-Min Liu, Andrew A. Gewirth, Christopher J. Barile, Yeyoung Ha, Kimberly A. See
Magnesium batteries offer an opportunity to use naturally abundant Mg and achieve large volumetric capacities reaching over four times that of conventional Li-based intercalation anodes. High volumetric capacity is enabled by the use of a Mg metal anode in which charge is stored via electrodeposition and stripping processes, however, electrolytes that support efficient Mg electrodeposition and stripping are few and are often prepared from highly reactive compounds. One interesting electrolyte solution that supports Mg deposition and stripping without the use of highly reactive reagents is the magnesium aluminum chloride complex (MACC) electrolyte. The MACC exhibits high Coulombic efficiencies and low deposition overpotentials following an electrolytic conditioning protocol that stabilizes species necessary for such behavior. Here, we discuss the effect of the MgCl2 and AlCl3 concentrations on the deposition overpotential, current density, and the conditioning process. Higher concentrations of MACC exhibit enhanced Mg electrodeposition current density and much faster conditioning. An increase in the salt concentrations causes a shift in the complex equilibria involving both cations. The conditioning process is strongly dependent on the concentration suggesting that the electrolyte is activated through a change in speciation of electrolyte complexes and is not simply due to the annihilation of electrolyte impurities. Additionally, the presence of the [Mg2(μ-Cl)3·6THF]+ in the electrolyte solution is again confirmed through careful analysis of experimental Raman spectra coupled with simulation and direct observation of the complex in sonic spray ionization mass spectrometry. Importantly, we suggest that the ∼210 cm–1 mode commonly observed in the Raman spectra of many Mg electrolytes is indicative of the C3v symmetric [Mg2(μ-Cl)3·6THF]+. The 210 cm–1 mode is present in many electrolytes containing MgCl2, so its assignment is of broad interest to the Mg electrolyte community.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b08088

DOI: 10.1021/acsami.7b08088

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.