3 years ago

Accomplishment of Multifunctional π-Conjugated Polymers by Regulating the Degree of Side-Chain Fluorination for Efficient Dopant-Free Ambient-Stable Perovskite Solar Cells and Organic Solar Cells

Accomplishment of Multifunctional π-Conjugated Polymers by Regulating the Degree of Side-Chain Fluorination for Efficient Dopant-Free Ambient-Stable Perovskite Solar Cells and Organic Solar Cells
Gibok Han, Kumarasamy Gunasekar, Hyunjung Lee, Sang Ho Park, Bumjoon J. Kim, Hyunji Kim, Sung-Ho Jin, Ryosuke Nishikubo, Soohyun Kim, Akinori Saeki, Kakaraparthi Kranthiraja, Myungkwan Song, Chang Su Kim
We present an efficient approach to develop a series of multifunctional π-conjugated polymers (P1–P3) by controlling the degree of fluorination (0F, 2F, and 4F) on the side chain linked to the benzodithiophene unit of the π-conjugated polymer. The most promising changes were noticed in optical, electrochemical, and morphological properties upon varying the degree of fluorine atoms on the side chain. The properly aligned energy levels with respect to the perovskite and PCBM prompted us to use them in perovskite solar cells (PSCs) as hole-transporting materials (HTMs) and in bulk heterojunction organic solar cells (BHJ OSCs) as photoactive donors. Interestingly, P2 (2F) and P3 (4F) showed an enhanced power conversion efficiency (PCE) of 14.94%, 10.35% compared to P1 (0F) (9.80%) in dopant-free PSCs. Similarly, P2 (2F) and P3 (4F) also showed improved PCE of 7.93% and 7.43%, respectively, compared to P1 (0F) (PCE of 4.35%) in BHJ OSCs. The high photvoltaic performance of the P2 and P3 based photovotaic devices over P1 are well correlated with their energy level alignment, charge transporting, morphological and packing properties, and hole transfer yields. In addition, the P1–P3 based dopant-free PSCs and BHJ OSCs showed an excellent ambient stability up to 30 days without a significant drop in their initial performance.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b09146

DOI: 10.1021/acsami.7b09146

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.