4 years ago

Nanoparticles with Embedded Porphyrin Photosensitizers for Photooxidation Reactions and Continuous Oxygen Sensing

Nanoparticles with Embedded Porphyrin Photosensitizers for Photooxidation Reactions and Continuous Oxygen Sensing
Jiří Mosinger, Veronika Berzediová, Pavel Kubát, Petr Henke, Kamil Lang, Miroslav Štěpánek
We report the synthesis and characterization of sulfonated polystyrene nanoparticles (average diameter 30 ± 14 nm) with encapsulated 5,10,15,20-tetraphenylporphyrin or ionically entangled tetracationic 5,10,15,20-tetrakis(N-methylpyridinium-4-yl)porphyrin, their photooxidation properties, and the application of singlet oxygen-sensitized delayed fluorescence (SODF) in oxygen sensing. Both types of nanoparticles effectively photogenerated singlet oxygen, O2(1Δg). The O2(1Δg) phosphorescence, transient absorption of the porphyrin triplet states, and SODF signals were monitored using time-resolved spectroscopic techniques. The SODF intensity depended on the concentration of the porphyrin photosensitizer and dissolved oxygen and on the temperature. After an initial period (a few microseconds), the kinetics of the SODF process can be approximated as a monoexponential function, and the apparent SODF lifetimes can be correlated with the oxygen concentration. The oxygen sensing based on SODF allowed measurement of the dissolved oxygen in aqueous media in the broad range of oxygen concentrations (0.2–38 mg L–1). The ability of both types of nanoparticles to photooxidize external substrates was predicted by the SODF measurements and proven by chemical tests. The relative photooxidation efficacy was highest at a low porphyrin concentration, as indicated by the highest fluorescence quantum yield (ΦF), and it corresponds with negligible inner filter and self-quenching effects. The photooxidation abilities were sensitive to the influence of temperature on the diffusion and solubility of oxygen in both polystyrene and water media and to the rate constant of the O2(1Δg) reaction with a substrate. Due to their efficient photogeneration of cytotoxic O2(1Δg) at physiological temperatures and their oxygen sensing via SODF, both types of nanoparticles are promising candidates for biomedical applications.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b12009

DOI: 10.1021/acsami.7b12009

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.