5 years ago

Dewatering Oil Sands Tailings with Degradable Polymer Flocculants

Dewatering Oil Sands Tailings with Degradable Polymer Flocculants
Robin A. Hutchinson, Thomas R. Rooney, Sarang P. Gumfekar, João B. P. Soares
We synthesized hydrolytically degradable cationic polymers by micellar radical polymerization of a short-chain polyester macromonomer, polycaprolactone choline iodide ester methacrylate (PCL2ChMA) with two polyester units, and used them to flocculate oil sands mature fine tailings (MFT). We evaluated the flocculation performance of the homopolymer and copolymers with 30 mol % acrylamide (AM) by measuring initial settling rate (ISR), supernatant turbidity, and capillary suction time (CST) of the sediments. Flocculants made with trimethylaminoethyl methacrylate chloride (TMAEMC), the monomer corresponding to PCLnChMA with n = 0, have improved performance over poly(PCL2ChMA) at equivalent loadings due to their higher charge density per gram of polymer. However, MFT sediments flocculated using the PCL2ChMA-based polymers are easier to dewater (up to an 85% reduction in CST) after accelerated hydrolytic degradation of the polyester side chains. This study demonstrates the potential of designing cationic polymers that effectively flocculate oil sands tailings ponds, and also further dewater the resulting solids through polymer degradation.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b10302

DOI: 10.1021/acsami.7b10302

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.