5 years ago

Graphene-Based Sandwich Structures for Frequency Selectable Electromagnetic Shielding

Graphene-Based Sandwich Structures for Frequency Selectable Electromagnetic Shielding
Wei-Li Song, Daining Fang, Haosen Chen, Huimin Li, Mingji Chen, Yazheng Yang, Congcheng Gong, Xujin Yuan, Xiao-Dong Cheng
Due to substantial development of electronics and telecommunication techniques, materials with electromagnetic interference (EMI) shielding performance are significant in alleviating the interference impacts induced from a remarkable variety of devices. In the work, we propose novel sandwich structures for manipulating the EM wave transport, which holds unique EMI shielding features of frequency selectivity. By employing electrical and magnetic loss spacers, the resultant sandwich structures are endowed with tunable EMI shielding performance, showing substantial improvements in overall shielding effectiveness along with pronounced shielding peak shift. The mechanisms suggest that the multiple interfaces, electromagnetic loss media, and changes of representative EM wavelength could be critical roles in tailoring the EMI shielding performance. The results provide a versatile strategy that could be extended in other frequency ranges and various types of sandwich structures, promising great opportunities for designing and fabricating advanced electromagnetic attenuation materials and devices.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b08229

DOI: 10.1021/acsami.7b08229

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.