5 years ago

Glucose Oxidase–Polymer Nanogels for Synergistic Cancer-Starving and Oxidation Therapy

Glucose Oxidase–Polymer Nanogels for Synergistic Cancer-Starving and Oxidation Therapy
Jin Hu, Wenguo Zhao, Weiping Gao
Glucose oxidase (GOX) can convert glucose into gluconic acid and hydrogen peroxide (H2O2), which is potentially useful for synergistic cancer-starving and oxidation therapy. Herein we demonstrate a glucose-responsive nanomedicine made of GOX–polymer nanogels to regulate H2O2 production for synergistic melanoma starving and oxidation therapy. GOX–polymer nanogels showed glucose-responsive H2O2-generating activity in vitro, improved stability, and considerably enhanced tumor retention as compared to native GOX. More importantly, they exhibited high antimelanoma efficacy and no obvious systemic toxicity, whereas native GOX was ineffective and systemically toxic at the same dose. This work paves the way for establishing an endogenous and noninvasive cancer treatment paradigm that is based on intratumoral glucose-responsive, H2O2-generating chemical reactions.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b06814

DOI: 10.1021/acsami.7b06814

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.