5 years ago

3D-Printed Metal–Organic Framework Monoliths for Gas Adsorption Processes

3D-Printed Metal–Organic Framework Monoliths for Gas Adsorption Processes
Ali A. Rownaghi, Qasim Al-Naddaf, Fateme Rezaei, Stephen Eastman, Harshul Thakkar
Metal–organic frameworks (MOFs) have shown promising performance in separation, adsorption, reaction, and storage of various industrial gases; however, their large-scale applications have been hampered by the lack of a proper strategy to formulate them into scalable gas–solid contactors. Herein, we report the fabrication of MOF monoliths using the 3D printing technique and evaluation of their adsorptive performance in CO2 removal from air. The 3D-printed MOF-74(Ni) and UTSA-16(Co) monoliths with MOF loadings as high as 80 and 85 wt %, respectively, were developed, and their physical and structural properties were characterized and compared with those of MOF powders. Our adsorption experiments showed that, upon exposure to 5000 ppm (0.5%) CO2 at 25 °C, the MOF-74(Ni) and UTSA-16(Co) monoliths can adsorb CO2 with uptake capacities of 1.35 and 1.31 mmol/g, respectively, which are 79% and 87% of the capacities of their MOF analogues under the same conditions. Furthermore, a stable performance was obtained for self-standing 3D-printed monolithic structures with relatively good adsorption kinetics. The preliminary findings reported in this investigation highlight the advantage of the robocasting (3D printing) technique for shaping MOF materials into practical configurations that are suitable for various gas separation applications.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b11626

DOI: 10.1021/acsami.7b11626

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.