4 years ago

Tuning the Endocytosis Mechanism of Zr-Based Metal–Organic Frameworks through Linker Functionalization

Tuning the Endocytosis Mechanism of Zr-Based Metal–Organic Frameworks through Linker Functionalization
Daniel Maspoch, Inhar Imaz, David Fairen-Jimenez, Ross S. Forgan, Gerard Boix, Ross J. Marshall, Salame Haddad, Isabel Abánades Lázaro, Claudia Orellana-Tavra
A critical bottleneck for the use of metal–organic frameworks (MOFs) as drug delivery systems has been allowing them to reach their intracellular targets without being degraded in the acidic environment of the lysosomes. Cells take up particles by endocytosis through multiple biochemical pathways, and the fate of these particles depends on these routes of entry. Here, we show the effect of functional group incorporation into a series of Zr-based MOFs on their endocytosis mechanisms, allowing us to design an efficient drug delivery system. In particular, naphthalene-2,6-dicarboxylic acid and 4,4′-biphenyldicarboxylic acid ligands promote entry through the caveolin-pathway, allowing the particles to avoid lysosomal degradation and be delivered into the cytosol and enhancing their therapeutic activity when loaded with drugs.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b07342

DOI: 10.1021/acsami.7b07342

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.