3 years ago

Spin-Controlled Multiple Pencil Beams and Vortex Beams with Different Polarizations Generated by Pancharatnam-Berry Coding Metasurfaces

Spin-Controlled Multiple Pencil Beams and Vortex Beams with Different Polarizations Generated by Pancharatnam-Berry Coding Metasurfaces
Tie Jun Cui, Shuo Liu, Lei Zhang, Lianlin Li
We propose to design coding metasurfaces based on the Pancharatnam-Berry (PB) phase. The proposed PB coding metasurface could control circularly polarized components of incident waves, by encoding geometric phase into the orientation angle of coding particles to generate 1-bit and multibit phase responses. We perform digital convolution operations on scattering patterns of the PB coding metasurface to reach flexible controls of the circularly polarized waves, forming spin-controlled multiple beams with different polarizations in free space, such as pencil beams and vortex beams carrying orbital angular momentum. Both numerical and experimental results demonstrate the excellent performance of the PB coding metasurface, which opens a pathway to novel types of multibeam generations and provides an effective way to expand the beam coverage for wireless communication applications.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b12468

DOI: 10.1021/acsami.7b12468

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.