4 years ago

Molecular Dynamics Study of Water Flow Across Multiple Layers of Pristine, Oxidized, and Mixed Regions of Graphene Oxide: Effect of Graphene Oxide Layer-to-Layer Distance

Molecular Dynamics Study of Water Flow Across Multiple Layers of Pristine, Oxidized, and Mixed Regions of Graphene Oxide: Effect of Graphene Oxide Layer-to-Layer Distance
Hyung J. Kim, Jon A. L. Willcox
Recent studies revealing exceptionally rapid water flow across graphene oxide membranes have highlighted them for potential filtration and separation applications. The physical and chemical features in graphene oxide membranes are heterogeneous, and there remains a great deal of speculation as to what is responsible for the facile water percolation. One potential contributing feature is the variation of interlayer spacing, which can occur naturally or be artificially induced. Herein, water flow across pristine, oxidized, and mixed membranes with interlayer distances of 0.7, 0.9, and 1.2 nm, corresponding respectively to the formation of discrete mono-, bi-, and trilayer water structures, was studied via molecular dynamics simulations. The interlayer spacing of 0.7 nm results in the formation of square ice for the pristine graphene membrane, which leads to collective motion, inhibiting equilibrium transport but allowing for rapid nonequilibrium flow comparable to that in the membranes with larger interlayer distances. A four-point time correlation function analysis of water structural relaxation reveals that collective water motions are responsible for rapid nonequilibrium flow for the interlayer spacing of 0.7 nm. Meanwhile, the central water layers formed in an interlayer spacing of 1.2 nm lead to almost entirely decoupled structure and dynamics between outer water layers.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b06063

DOI: 10.1021/acs.jpcc.7b06063

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.