4 years ago

Insight into the Unique Fluorescence Quenching Property of Metal-Organic Frameworks upon DNA Binding

Insight into the Unique Fluorescence Quenching Property of Metal-Organic Frameworks upon DNA Binding
Ya Ding, Hai-Ling Liu, Huai-Song Wang, Hong-Yuan Chen, Kang Wang, Xing-Hua Xia, Jing-Juan Xu
Metal-organic frameworks (MOFs) have been successfully used as efficient quenchers for fluorescent DNA detection. However, the surface charge property of MOFs can inevitably affect their fluorescence quenching behavior. Herein, nanoscale MOFs (NMOFs), including MOF nanosheets and nanoparticles, have been employed to investigate the relationship between the fluorescence quenching and surface properties of NMOFs. We find that the positively and negatively charged NMOFs exhibited totally opposite fluorescence quenching properties toward negatively charged FAM-labeled double-stranded DNA (dsDNA). On the contrast, they show negligible influence on the sensing of positively charged TAMRA-labeled dsDNA. This study provides a new insight of the fluorescence quenching property of NMOFs and offers a new concept for construction of ratiometric fluorescence DNA biosensors.

Publisher URL: http://dx.doi.org/10.1021/acs.analchem.7b02256

DOI: 10.1021/acs.analchem.7b02256

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.