3 years ago

Highly Reversible Conversion-Type FeOF Composite Electrode with Extended Lithium Insertion by Atomic Layer Deposition LiPON Protection

Highly Reversible Conversion-Type FeOF Composite Electrode with Extended Lithium Insertion by Atomic Layer Deposition LiPON Protection
Chunsheng Wang, Alexander Pearse, Gary W. Rubloff, Chuan-Fu Lin, Xiulin Fan, Keith Gregorczyk, Sz-Chian Liou, Malachi Noked, Sang Bok Lee, Michal Leskes
High-energy conversion electrodes undergo successive Li insertion and conversion during lithiation. A primary scientific obstacle to harnessing the potentially high lithium storage capabilities of conversion electrode materials has been the formation of insulating new phases throughout the conversion reactions. These new phases are chemically stable, and electrochemically irreversible if formed in large amounts with coarsening. Herein, we synthesized FeOF conversion material as a model system and mechanistically demonstrate that a thin solid electrolyte [lithium phosphorus oxynitride (LiPON)] atomic layer deposition-deposited on the composite electrode extends the Li insertion process to higher concentrations, delaying the onset of a parasitic chemical conversion reaction and rendering the redox reaction of the protected conversion electrode electrochemically reversible. Reversibility is demonstrated to at least 100 cycles, with the LiPON protective coating increasing capacity retention from 29 to 89% at 100 cycles. Pursuing the chemical mechanism behind the boosted electrochemical reversibility, we conducted electron energy-loss spectroscopy, X-ray photoelectron spectroscopy, solid-state nuclear magnetic resonance, and electrochemical measurements that unrevealed the suppression of undesired phase formation and extended lithium insertion of the coated electrode. Support for the delayed consequences of the conversion reaction is also obtained by high-resolution transmission electron microscopy. Our findings strongly suggest that undesired new phase formation upon lithiation of electrode materials can be suppressed in the presence of a thin protection layer not only on the surface of the coated electrode but also in the bulk of the material through mechanical confinement that modulates the electrochemical reaction.

Publisher URL: http://dx.doi.org/10.1021/acs.chemmater.7b03058

DOI: 10.1021/acs.chemmater.7b03058

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.