2 years ago

Active tuning of plasmon damping via light induced magnetism. (arXiv:2201.07842v1 [physics.optics])

Oscar Hsu-Cheng Cheng, Boqin Zhao, Zachary Brawley, Dong Hee Son, Matthew Sheldon
Circularly polarized optical excitation of plasmonic nanostructures causes coherent circulating motion of their electrons, which in turn, gives rise to strong optically induced magnetization - a phenomenon known as the inverse Faraday effect (IFE). In this study we report how the IFE also significantly decreases plasmon damping. By modulating the optical polarization state incident on achiral plasmonic nanostructures from linear to circular, we observe reversible increases of reflectance by 78% as well as simultaneous increases of optical field concentration by 35.7% under 10^9 W/m^2 continuous wave (CW) optical excitation. These signatures of decreased plasmon damping were also monitored in the presence of an externally applied magnetic field (0.2 T). The combined interactions allow an estimate of the light-induced magnetization, which corresponds to an effective magnetic field of ~1.3 T during circularly polarized CW excitation (10^9 W/m^2). We rationalize the observed decreases in plasmon damping in terms of the Lorentz forces acting on the circulating electron trajectories. Our results outline strategies for actively modulating intrinsic losses in the metal, and thereby, the optical mode quality and field concentration via opto-magnetic effects encoded in the polarization state of incident light.

Publisher URL: https://arxiv.org/abs/2201.07842

DOI: arXiv:2201.07842v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.