5 years ago

Atomic Layer Deposition of an Indium Gallium Oxide Thin Film for Thin-Film Transistor Applications

Atomic Layer Deposition of an Indium Gallium Oxide Thin Film for Thin-Film Transistor Applications
Jin-Seong Park, Eun Jung Park, Bonggeun Shong, Jiazhen Sheng
Indium gallium oxide (IGO) thin films were deposited via atomic layer deposition (ALD) using [1,1,1-trimethyl-N-(trimethylsilyl)silanaminato]indium (InCA-1) and trimethylgallium (TMGa) as indium and gallium precursors, respectively, and hydrogen peroxide as the reactant. To clearly understand the mechanism of multicomponent ALD growth of oxide semiconductor materials, several variations in the precursor–reactant deposition cycles were evaluated. Gallium could be doped into the oxide film at 200 °C when accompanied by an InCA-1 pulse, and no growth of gallium oxide was observed without the simultaneous deposition of indium oxide. Density functional theory calculations for the initial adsorption of the precursors revealed that chemisorption of TMGa was kinetically hindered on hydroxylated SiOx but was spontaneous on a hydroxylated InOx surface. Moreover, the atomic composition and electrical characteristics, such as carrier concentration and resistivity, of the ALD-IGO film were controllable by adjusting the deposition supercycles, composed of InO and GaO subcycles. Thus, ALD-IGO could be employed to fabricate active layers for thin-film transistors to realize an optimum mobility of 9.45 cm2/(V s), a threshold voltage of −1.57 V, and a subthreshold slope of 0.26 V/decade.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b04985

DOI: 10.1021/acsami.7b04985

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.