3 years ago

Facile one-step synthesis of mesoporous Ni-Mg-Al catalyst for syngas production using coupled methane reforming process

Facile one-step synthesis of mesoporous Ni-Mg-Al catalyst for syngas production using coupled methane reforming process
Mesoporous Ni-Mg-Al and Ni-Al catalysts were facilely synthesized via evaporation-induced self-assembly (EISA) method and employed for coupled reforming reaction consisting of dry reforming of methane (DRM) and partial oxidation of methane (POM) to produce syngas (H2 +CO). The Ni-Mg-Al and Ni-Al catalysts with encapsulated nickel nanoparticles were directly synthesized in one-pot way. For comparison, Ni/Al2O3 as reference catalyst was also prepared by general impregnation method. Characterization by BET, XRD and H2-chemisorption revealed that the Ni-Mg-Al catalyst owned larger surface area and higher Ni dispersion as well as smaller metallic Ni particles size compared to Ni-Al and Ni/Al2O3 catalysts. CO2-TPD demonstrated that the Ni-Mg-Al catalyst presented stronger basicity due to Mg incorporation. H2-TPR confirmed that the reduction of Ni-based species to Ni0 was performed in high temperature due to the formed NiAl2O4 phase. Activity tests indicated that this Ni-Mg-Al catalyst, due to its excellent physicochemical property, exhibited higher CH4 conversion, H2 selectivity, and H2/CO ratio in the coupled DRM-POM reaction. XRD, SEM and TG-DTA analyses of the used catalysts disclosed that the Mg-modified Ni-Mg-Al catalyst for syngas production using coupled DRM-POM reaction exhibited robust resistance to coke deposition. Consequently, by the synergistic cooperation between the coupled DRM-POM reaction and Mg-modified Ni-Mg-Al catalyst, high catalytic activity and stability could be accomplished to produce syngas.

Publisher URL: www.sciencedirect.com/science

DOI: S0016236117310876

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.