5 years ago

Using Predefined M3(μ3-O) Clusters as Building Blocks for an Isostructural Series of Metal–Organic Frameworks

Using Predefined M3(μ3-O) Clusters as Building Blocks for an Isostructural Series of Metal–Organic Frameworks
Wouter van Beek, Pascal Schouwink, Daniel T. Sun, Safak Bulut, Wendy L. Queen, Philip Pattison, Pascal Mieville, Mehrdad Asgari, Zhongrui Zhou, Li Peng
Metal–organic frameworks (MOFs) have attracted much attention in the past decade owing to their unprecedented internal surface areas, tunable topologies, designable surfaces, and various potential applications. One bottleneck in the field regarding MOF synthesis is controlling the metal-containing secondary building unit (SBU) incorporated into the structure. In this work we report the synthesis and characterization of five trimeric [M33-O)(CH3CO2)6]x clusters (where M = Fe3+, Cr3+, Fe3+/Cr3+, Fe3+/Co2+, or Fe3+/Ni2+ and x = +1 or 0). The monocarboxylate capping ligand, acetate in this case, readily undergoes exchange with several difunctional counterparts, including 1,4-benzenedicarboxylic acid (H2-BDC) and biphenyl-4,4′-dicarboxylic acid (H2-BPDC), for the formation of an isostructural series of MOFs, several of which are newly reported (for M = Fe3+/Cr3+, Fe3+/Co2+, and Fe3+/Ni2+) and show excellent CO2 adsorption properties. In this report, a host of techniques including NMR, ICP, and ESI-MS are used to probe the ligand exchange process and composition of the SBUs, and XAS is used to monitor the Fe3+ and Cr3+ environment throughout the reactions, giving strong evidence that the clusters stay intact throughout the MOF synthesis. This work reveals that predefined SBUs is an effective means to create metal-substituted analogues of known frameworks. Further, CO adsorption and in situ IR are used to probe accessibility of the metals after solvent removal. We show for the first time that the incorporation of the neutral clusters, containing weaker Lewis acids like Ni2+ and Co2+, can promote the formation of open metal sites in the MOF frameworks, structural features known to enhance the binding energy of small guest molecules like CO2.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b06041

DOI: 10.1021/acsami.7b06041

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.