5 years ago

Hollow Co3O4 Nanosphere Embedded in Carbon Arrays for Stable and Flexible Solid-State Zinc–Air Batteries

Hollow Co3O4 Nanosphere Embedded in Carbon Arrays for Stable and Flexible Solid-State Zinc–Air Batteries
Afriyanti Sumboja, Chuanwei Cheng, John Wang, Ximeng Liu, Hong Zhang, Stephen J. Pennycook, Haijun Wu, Weina Ren, Zhaolin Liu, Cao Guan
Highly active and durable air cathodes to catalyze both the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are urgently required for rechargeable metal–air batteries. In this work, an efficient bifunctional oxygen catalyst comprising hollow Co3O4 nanospheres embedded in nitrogen-doped carbon nanowall arrays on flexible carbon cloth (NC-Co3O4/CC) is reported. The hierarchical structure is facilely derived from a metal–organic framework precursor. A carbon onion coating constrains the Kirkendall effect to promote the conversion of the Co nanoparticles into irregular hollow oxide nanospheres with a fine scale nanograin structure, which enables promising catalytic properties toward both OER and ORR. The integrated NC-Co3O4/CC can be used as an additive-free air cathode for flexible all-solid-state zinc–air batteries, which present high open circuit potential (1.44 V), high capacity (387.2 mAh g−1, based on the total mass of Zn and catalysts), excellent cycling stability and mechanical flexibility, significantly outperforming Pt- and Ir-based zinc–air batteries. An efficient bifunctional oxygen catalyst comprising hollow Co3O4 nanospheres embedded in N-doped carbon nanowall arrays (NC-Co3O4) is facilely fabricated from a metal–organic framework. The additive-free NC-Co3O4 electrode can be directly utilized as an efficient air cathode for a flexible solid-state Zn–air battery, which demonstrates much improved cycling stability and mechanical flexibility than Pt- and Ir-based zinc–air batteries.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/adma.201704117

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.