3 years ago

Ordered Superparticles with an Enhanced Photoelectric Effect by Sub-Nanometer Interparticle Distance

Ordered Superparticles with an Enhanced Photoelectric Effect by Sub-Nanometer Interparticle Distance
Tie Wang, Zhen Zhang, Cong Liu, Guang Mo, Zhenjie Xue, Qian Song, Xiaoyun Qin, Xuezhi Qiao, Dan Luo
As the development in self-assembly of nanoparticles, a main question is directed to whether the supercrystalline structure can facilitate generation of collective properties, such as coupling between adjacent nanocrystals or delocalization of exciton to achieve band-like electronic transport in a 3D assembly. The nanocrystal surfaces are generally passivated by insulating organic ligands, which block electronic communication of neighboring building blocks in nanoparticle assemblies. Ligand removal or exchange is an operable strategy for promoting electron transfer, but usually changes the surface states, resulting in performance alteration or uncontrollable aggregation. Here, 3D, supercompact superparticles with well-defined superlattice domains through a thermally controlled emulsion-based self-assembly method is fabricated. The interparticle spacing in the superparticles shrinks to ≈0.3 nm because organic ligands lie prone on the nanoparticle surface, which are sufficient to overcome the electron transfer barrier. The ordered and compressed superstructures promote coupling and electronic energy transfer between CdSSe quantum dots (QDs). Therefore, the acquired QD superparticles exhibit different optical properties and enhanced photoelectric activity compared to individual QDs. Ordered quantum dot (QD) superparticles with a compressed supercrystalline domain are fabricated through a thermally controlled emulsification process. The interparticle distances are shrunk down to the lattice constant of the QDs by prostrating ligands, which promotes coupling and electronic energy transfer between QDs. The acquired QD superparticles, exhibiting unique optical and photoelectric properties, can be applied in photodegradation and solar-driven photocatalytic processes.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/adfm.201701982

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.