3 years ago

The Fusion of Imidazolium-Based Ionic Polymer and Carbon Nanotubes: One Type of New Heteroatom-Doped Carbon Precursors for High-Performance Lithium–Sulfur Batteries

The Fusion of Imidazolium-Based Ionic Polymer and Carbon Nanotubes: One Type of New Heteroatom-Doped Carbon Precursors for High-Performance Lithium–Sulfur Batteries
Ruihu Wang, Zhubing Xiao, Hui Pan, Xiaoju Li, Zhibin Cheng
Rational design of sulfur host materials with high electrical conductivity and strong polysulfides (PS) confinement is indispensable for high-performance lithium–sulfur (Li–S) batteries. This study presents one type of new polymer material based on main-chain imidazolium-based ionic polymer (ImIP) and carbon nanotubes (CNTs); the polymer composites can serve as a precursor of CNT/NPC-300, in which close coverage and seamless junction of CNTs by N-doped porous carbon (NPC) form a 3D conductive network. CNT/NPC-300 inherits and strengthens the advantages of both high electrical conductivity from CNTs and strong PS entrapping ability from NPC. Benefiting from the improved attributes, the CNT/NPC-300-57S electrode shows much higher reversible capacity, rate capability, and cycling stability than NPC-57S and CNTs-56S. The initial discharge capacity of 1065 mA h g−1 is achieved at 0.5 C with the capacity retention of 817 mA h g−1 over 300 cycles. Importantly, when counter bromide anion in the composite of CNTs and ImIP is metathesized to bis(trifluoromethane sulfonimide), heteroatom sulfur is cooperatively incorporated into the carbon hosts, and the surface area is increased with the promotion of micropore formation, thus further improving electrochemical performance. This provides a new method for optimizing porous properties and dopant components of the cathode materials in Li–S batteries. The integration of main-chain imidazolium-based ionic polymer and carbon nanotubes (CNTs) generates one type of new 3D conductive carbon material for high-performance Li–S batteries. The close coverage and seamless junction of CNTs by N-doped porous carbon (NPC) result in inheritance and improvement of high electrical conductivity from CNTs and strong polysulfides entrapping ability from NPC.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/adfm.201703936

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.