5 years ago

Chemically Modified Surface Having a Dual-Structured Hierarchical Topography for Controlled Cell Growth

Chemically Modified Surface Having a Dual-Structured Hierarchical Topography for Controlled Cell Growth
Gaojian Chen, Meimei Bao, Shenglin Zhou, Bo Yang, Xiaohua Zhang, Lun Peng
This report describes a technique for fabricating dual-structured hierarchical surface topography on the surface of polydimethylsiloxane (PDMS) films through simply replicating prefabricated patterns and wrinkling PDMS films. To enhance the biocompatibility of PDMS films, we synthesize a biocompatible dopamine-glycopolymer, which is utilized to modify the chemical feature of the PDMS surface. Dopamine component in this copolymer is introduced for the formation of a carbohydrate layer on the surface of PDMS films because of its excellent adhesion. The carbohydrate component in this copolymer enhances the interactions between cells and PDMS films. We investigate the influence of the chemical and topographical surface properties of the extracellular matrix on fibroblast cell growth. The coupling of the dopamine-glycopolymer coating and hierarchical topography produces the best induction effect on the alignment of cells.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b06197

DOI: 10.1021/acsami.7b06197

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.