5 years ago

Self-Supported Bi2MoO6 Nanowall for Photoelectrochemical Water Splitting

Self-Supported Bi2MoO6 Nanowall for Photoelectrochemical Water Splitting
Jie Ming, Yuxi Wang, Rui Xu, Yang Xu, Yong Lei, Qun Fu, Min Zhou, Minghong Wu
The nanowall has been regarded as a promising architecture for highly efficient photoelectrochemical (PEC) water splitting due to various advantages, such as open geometry, highly reactive facets, independent contact with current collector, and so forth. Here, a vertically aligned Bi2MoO6 nanosheet array, which is also called a nanowall, is first achieved directly on the ITO glass by a facile solvothermal approach. The structural features not only offer multiple superiorities for PEC processes, but also provide the bridge for in-depth insights of intrinsic features of Bi2MoO6 photoanodes. A quantitative analysis of the electrochemical process declares that the utilization of photogenerated charges in the Bi2MoO6 nanowall has been optimized, but the main obstacle comes from the severe bulk recombination and low efficiencies of charge separation. This evaluation both enriches the visual assessment methods and directs clear guidance for future improvement, which could serve as a beacon for well-directed and economic photoelectrode amelioration, to shorten the road toward ideal photoelectrodes.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b03801

DOI: 10.1021/acsami.7b03801

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.