3 years ago

Thermally-triggered free-standing shape-memory actuators

Thermally-triggered free-standing shape-memory actuators
This investigation presents a new approach to obtain free-standing thermally-triggered “two-way” shape-memory actuators by realizing multilayer structures constituted by glassy thermoset (GT) films anchored to a previously programmed liquid-crystalline network (LCN) film. The GT is obtained via dual-curing of off-stoichiometric “thiol-epoxy” mixtures, thus enabling the development of complex actuator configurations thanks to the easy processing in the intermediate stage, and a compact and resistant design due to the strong adhesion between the layers obtained upon the final curing stage of the GT. A model based on the classical multilayered beam theory to predict the maximum deflection of a “beam-like” design is proposed and its reliability is verified by experimental investigation of actuators with different configurations and LCN stretching levels. The results show the capability of these actuators to bend and unbend under various consecutive heating-cooling procedures in a controlled way. The maximum deflection can be modulated through the configuration and the LCN stretching level, showing an excellent fitting with the model predictions. The model is able to predict high actuation levels (angles of curvature ≈ 180°) and the bidirectional shape-memory behavior of the device as a function of the thickness, configuration of the layers, and the LCN stretching level. This approach enables the design of free-standing two-way actuators covering a range of bending actuation from 27 to 98% of the theoretical maximum deflection.

Publisher URL: www.sciencedirect.com/science

DOI: S0014305717313241

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.