5 years ago

Investigating the bifunctionality of cyclizing and “classical” 5-aminolevulinate synthases

Wenjun Zhang, Joyce Liu, Jill Zeilstra-Ryalls, James Kaganjo
The precursor to all tetrapyrroles is 5-aminolevulinic acid, which is made either via the condensation of glycine and succinyl-CoA catalyzed by an ALA synthase (the C4 or Shemin pathway) or by a pathway that uses glutamyl-tRNA as a precursor and involves other enzymes (the C5 pathway). Certain ALA synthases also catalyze the cyclization of ALA-CoA to form 2-amino-3-hydroxycyclopent-2-en-1-one. Organisms with synthases that possess this second activity nevertheless rely upon the C5 pathway to supply ALA for tetrapyrrole biosynthesis. The C5N units are components of a variety of secondary metabolites. Here, we show that an ALA synthase used exclusively for tetrapyrrole biosynthesis is also capable of catalyzing the cyclization reaction, albeit at much lower efficiency than the dedicated cyclases. Two absolutely conserved serines present in all known ALA-CoA cyclases are threonines in all known ALA synthases, suggesting they could be important in distinguishing the functions of these enzymes. We found that purified mutant proteins having single and double substitutions of the conserved residues are not improved in their respective alternate activities; rather, they are worse. Protein structural modeling and amino acid sequence alignments were explored within the context of what is known about the reaction mechanisms of these two different types of enzymes to consider what other features are important for the two activities. This article is protected by copyright. All rights reserved.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/pro.3324

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.