4 years ago

Identifying direct contacts between protein complex subunits from their conditional dependence in proteomics datasets

Edward M. Marcotte, Christian L. Müller, Richard Bonneau, Kevin Drew
Determining the three dimensional arrangement of proteins in a complex is highly beneficial for uncovering mechanistic function and interpreting genetic variation in coding genes comprising protein complexes. There are several methods for determining co-complex interactions between proteins, among them co-fractionation / mass spectrometry (CF-MS), but it remains difficult to identify directly contacting subunits within a multi-protein complex. Correlation analysis of CF-MS profiles shows promise in detecting protein complexes as a whole but is limited in its ability to infer direct physical contacts among proteins in sub-complexes. To identify direct protein-protein contacts within human protein complexes we learn a sparse conditional dependency graph from approximately 3,000 CF-MS experiments on human cell lines. We show substantial performance gains in estimating direct interactions compared to correlation analysis on a benchmark of large protein complexes with solved three-dimensional structures. We demonstrate the method’s value in determining the three dimensional arrangement of proteins by making predictions for complexes without known structure (the exocyst and tRNA multi-synthetase complex) and by establishing evidence for the structural position of a recently discovered component of the core human EKC/KEOPS complex, GON7/C14ORF142, providing a more complete 3D model of the complex. Direct contact prediction provides easily calculable additional structural information for large-scale protein complex mapping studies and should be broadly applicable across organisms as more CF-MS datasets become available.

Publisher URL: http://journals.plos.org/ploscompbiol/article

DOI: 10.1371/journal.pcbi.1005625

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.