4 years ago

Interaction of a model apolipoprotein, apoLp-III, with an oil-phospholipid interface

Interaction of a model apolipoprotein, apoLp-III, with an oil-phospholipid interface
Lipid droplets are “small” organelles that play an important role in de novo synthesis of new membrane, and steroid hormones, as well as in energy storage. The way proteins interact specifically with the oil-(phospho-)lipid monolayer interface of lipid droplets is a relatively unexplored but crucial question. Here, we use our home built liquid droplet tensiometer to mimic intracellular lipid droplets and study protein-lipid interactions at this interface. As model neutral lipid binding protein, we use apoLp-III, an amphipathic α-helix bundle protein. This domain is also found in proteins from the perilipin family and in apoE. Protein binding to the monolayer is studied by the decrease in the oil/water surface tension. Previous work used POPC (one of the major lipids found on lipid droplets) to form the phospholipid monolayer on the triolein surface. Here we expand this work by incorporating other lipids with different physico-chemical properties to study the effect of charge and lipid head-group size. This study sheds light on the affinity of this important protein domain to interact with lipids.

Publisher URL: www.sciencedirect.com/science

DOI: S0005273617303188

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.