4 years ago

Fully Transparent Quantum Dot Light-Emitting Diode with a Laminated Top Graphene Anode

Fully Transparent Quantum Dot Light-Emitting Diode with a Laminated Top Graphene Anode
Yi Wan, Xiaodong Pi, Wanjin Xu, Wenhao Zhai, Guangzhao Ran, Xixi Xie, Wei Gu, Li Yao, Guogang Qin, Xin Fang
A new method to employ graphene as top electrode was introduced, and based on that, fully transparent quantum dot light-emitting diodes (T-QLEDs) were successfully fabricated through a lamination process. We adopted the widely used wet transfer method to transfer bilayer graphene (BG) on polydimethylsiloxane/polyethylene terephthalate (PDMS/PET) substrate. The sheet resistance of graphene reduced to ∼540 Ω/□ through transferring BG for 3 times on the PDMS/PET. The T-QLED has an inverted device structure of glass/indium tin oxide (ITO)/ZnO nanoparticles/(CdSSe/ZnS quantum dots (QDs))/1,1-bis[(di-4-tolylamino)phenyl] cyclohexane (TAPC)/MoO3/graphene/PDMS/PET. The graphene anode on PDMS/PET substrate can be directly laminated on the MoO3/TAPC/(CdSSe/ZnS QDs)/ZnO nanoparticles/ITO/glass, which relied on the van der Waals interaction between the graphene/PDMS and the MoO3. The transmittance of the T-QLED is 79.4% at its main electroluminescence peak wavelength of 622 nm.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b02026

DOI: 10.1021/acsami.7b02026

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.