3 years ago

Self-Immolative Chemiluminescence Polymers: Innate Assimilation of Chemiexcitation in a Domino-like Depolymerization

Self-Immolative Chemiluminescence Polymers: Innate Assimilation of Chemiexcitation in a Domino-like Depolymerization
Doron Shabat, Samer Gnaim
Self-immolative polymers are distinctive materials able to disassemble in a domino-like mechanism from head-to-tail upon a triggering event induced by an external stimulus. We have developed an effective molecular method to intrinsically assimilate a chemiluminescence turn-ON mechanism with a domino-like fragmentation mechanism. A unique molecular unit was synthesized, which could combine the abilities of executing the duel function of quinone-methide elimination and chemiexcitation. Incorporation of this unit as a monomer, results with the first class of stimuli-responsive self-immolative polymers with amplified chemiluminescence output. Responsive groups for various analytes were introduced as a head-trigger during the polymer synthesis. The polymers were demonstrated as chemiluminescence probes for detection of different chemical analytes. The obtained polymers were able to amplify the intensity and the duration of the light emission signal by factors correlated to their length. We anticipate that the chemiluminescence self-immolative polymers described here will find use for various research topics such as signal amplification, light-emitting new materials, and molecular probes with long-lasting light emission and imaging capabilities.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b04804

DOI: 10.1021/jacs.7b04804

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.