5 years ago

Nanopore Sensing of Protein Folding

Nanopore Sensing of Protein Folding
Aleksei Aksimentiev, Wei Si
Single-molecule studies of protein folding hold keys to unveiling protein folding pathways and elusive intermediate folding states—attractive pharmaceutical targets. Although conventional single-molecule approaches can detect folding intermediates, they presently lack throughput and require elaborate labeling. Here, we theoretically show that measurements of ionic current through a nanopore containing a protein can report on the protein’s folding state. Our all-atom molecular dynamics (MD) simulations show that the unfolding of a protein lowers the nanopore ionic current, an effect that originates from the reduction of ion mobility in proximity to a protein. Using a theoretical model, we show that the average change in ionic current produced by a folding–unfolding transition is detectable despite the orientational and conformational heterogeneity of the folded and unfolded states. By analyzing millisecond-long all-atom MD simulations of multiple protein transitions, we show that a nanopore ionic current recording can detect folding–unfolding transitions in real time and report on the structure of folding intermediates.

Publisher URL: http://dx.doi.org/10.1021/acsnano.7b02718

DOI: 10.1021/acsnano.7b02718

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.