3 years ago

Heating treatments affect the thermal behaviour of doxorubicin loaded in PEGylated liposomes

Heating treatments affect the thermal behaviour of doxorubicin loaded in PEGylated liposomes
Doxil® is a stealth marketed PEGylated liposomal formulation, containing the anticancer drug doxorubicin. After loading via a pH gradient, fibrillar supramolecular structures of doxorubicin sulfate originates inside the core of the liposomes. Recently, the crystallinity of doxorubicin sulfate has been confirmed by high-resolution calorimetry. However, no detailed information are available on the nature of doxorubicin sulfate nanocrystals and on the effect of different thermal treatments. Thus, the aim of this work was to characterize the thermal behaviour of Doxil® in comparison to the unloaded liposomes using microcalorimetry, dynamic light scattering and high-resolution ultrasound spectroscopy (HR-US). Different thermal programmes were applied with the aim to highlight the effect of the treatments on the formulation. The used techniques confirmed the ordered state of doxorubicin nanocrystals inside PEGylated liposomes. Particularly, microcalorimetry and HR-US highlighted the changes in the thermal behaviour of the drug under different heating programmes. Doxorubicin nanocrystals were found to be stable after heating up to 80°C, but an irreversible thermal behaviour was observed after a prolonged heating at elevated temperature (2h at 80°C). The non-reversibility could be related to the formation of a different ordered structure and enhanced by the slight leakage of the drug occurring after a prolonged heating.

Publisher URL: www.sciencedirect.com/science

DOI: S0378517317309353

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.