5 years ago

Fusion of Anthopleurin-B to AAV2 increases specificity of cardiac gene transfer

AAV-mediated gene therapy has become a promising therapeutic strategy for chronic diseases. Its clinical utilization, however, is limited by the potential risk of off-target effects. In this work we attempt to overcome this challenge, hypothesizing that cardiac ion channel-specific ligands could be fused onto the AAV capsid, and narrow its tropism to cardiac myocytes. We successfully fused the cardiac sodium channel (Nav1.5)-binding toxin Anthopleurin-B onto the AAV2 capsid without compromising virus integrity, and demonstrated increased specificity of cardiomyocyte attachment. Although virus attachment to Nav1.5 did not supersede the natural heparan-mediated virus binding, heparan-binding ablated vectors carrying Anthopleurin-B eliminated hepatic and other extracardiac gene transfer, while preserving cardiac myocyte gene transfer. Virus binding to the cardiac sodium channel transiently decreased sodium current density, but did not cause any arrhythmias. Our findings expand the knowledge of attachment, infectivity, and intracellular processing of AAV vectors, and present an alternative strategy for vector retargeting.

Publisher URL: www.sciencedirect.com/science

DOI: S0042682217303483

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.