4 years ago

Nitric oxide synthase inhibition restores orthostatic tolerance in young vasovagal syncope patients

Objective

Syncope is sudden transient loss of consciousness and postural tone with spontaneous recovery; the most common form is vasovagal syncope (VVS). We previously demonstrated impaired post-synaptic adrenergic responsiveness in young VVS patients was reversed by blocking nitric oxide synthase (NOS). We hypothesised that nitric oxide may account for reduced orthostatic tolerance in young recurrent VVS patients.

Methods

We recorded haemodynamics in supine VVS and healthy volunteers (aged 15–27 years), challenged with graded lower body negative pressure (LBNP) (–15, –30, –45 mm Hg each for 5 min, then –60 mm Hg for a maximum of 50 min) with and without NOS inhibitor NG-monomethyl-L-arginine acetate (L-NMMA). Saline plus phenylephrine (Saline+PE) was used as volume and pressor control for L-NMMA.

Results

Controls endured 25.9±4.0 min of LBNP during Saline+PE compared with 11.6±1.4 min for fainters (p<0.001). After L-NMMA, control subjects endured 24.8±3.2 min compared with 22.6±1.6 min for fainters. Mean arterial pressure decreased more in VVS patients during LBNP with Saline+PE (p<0.001) which was reversed by L-NMMA; cardiac output decreased similarly in controls and VVS patients and was unaffected by L-NMMA. Total peripheral resistance increased for controls but decreased for VVS during Saline+PE (p<0.001) but was similar following L-NMMA. Splanchnic vascular resistance increased during LBNP in controls, but decreased in VVS patients following Saline+PE which L-NMMA restored.

Conclusions

We conclude that arterial vasoconstriction is impaired in young VVS patients, which is corrected by NOS inhibition. The data suggest that both pre- and post-synaptic arterial vasoconstriction may be affected by nitric oxide.

Publisher URL: http://heart.bmj.com/cgi/content/short/103/21/1711

DOI: 10.1136/heartjnl-2017-311161

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.