5 years ago

Radiomics assessment of bladder cancer grade using texture features from diffusion-weighted imaging

Xi Zhang, Qiang Tian, Guangbin Cui, Yang Liu, Yuxia Wu, Zengyue Yang, Xiaopan Xu, Zhengrong Liang, Baojuan Li, Hongbing Lu
Purpose To 1) describe textural features from diffusion-weighted images (DWI) and apparent diffusion coefficient (ADC) maps that can distinguish low-grade bladder cancer from high-grade, and 2) propose a radiomics-based strategy for cancer grading using texture features. Materials and Methods In all, 61 patients with bladder cancer (29 in high- and 32 in low-grade groups) were enrolled in this retrospective study. Histogram- and gray-level co-occurrence matrix (GLCM)-based radiomics features were extracted from cancerous volumes of interest (VOIs) on DWI and corresponding ADC maps of each patient acquired from 3.0T magnetic resonance imaging (MRI). A Mann–Whitney U-test was applied to select features with significant differences between low- and high-grade groups (P < 0.05). Then support vector machine with recursive feature elimination (SVM-RFE) and classification strategy was adopted to find an optimal feature subset and then to establish a classification model for grading. Results A total 102 features were derived from each VOI and among them, 47 candidate features were selected, which showed significant intergroup differences (P < 0.05). By the SVM-RFE method, an optimal feature subset including 22 features was further selected from candidate features. The SVM classifier using the optimal feature subset achieved the best performance in bladder cancer grading, with an area under the receiver operating characteristic curve, accuracy, sensitivity, and specificity of 0.861, 82.9%, 78.4%, and 87.1%, respectively. Conclusion Textural features from DWI and ADC maps can reflect the difference between low- and high-grade bladder cancer, especially those GLCM features from ADC maps. The proposed radiomics strategy using these features, combined with the SVM classifier, may better facilitate image-based bladder cancer grading preoperatively. Level of Evidence: 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2017;46:1281–1288.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/jmri.25669

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.