3 years ago

Creating hemodynamic atlases of cardiac 4D flow MRI

Carl-Johan Carlhäll, Jonatan Eriksson, Merih Cibis, Mariana Bustamante, Tino Ebbers
Purpose Hemodynamic atlases can add to the pathophysiological understanding of cardiac diseases. This study proposes a method to create hemodynamic atlases using 4D Flow magnetic resonance imaging (MRI). The method is demonstrated for kinetic energy (KE) and helicity density (Hd). Materials and Methods Thirteen healthy subjects underwent 4D Flow MRI at 3T. Phase-contrast magnetic resonance cardioangiographies (PC-MRCAs) and an average heart were created and segmented. The PC-MRCAs, KE, and Hd were nonrigidly registered to the average heart to create atlases. The method was compared with 1) rigid, 2) affine registration of the PC-MRCAs, and 3) affine registration of segmentations. The peak and mean KE and Hd before and after registration were calculated to evaluate interpolation error due to nonrigid registration. Results The segmentations deformed using nonrigid registration overlapped (median: 92.3%) more than rigid (23.1%, P < 0.001), and affine registration of PC-MRCAs (38.5%, P < 0.001) and affine registration of segmentations (61.5%, P < 0.001). The peak KE was 4.9 mJ using the proposed method and affine registration of segmentations (P = 0.91), 3.5 mJ using rigid registration (P < 0.001), and 4.2 mJ using affine registration of the PC-MRCAs (P < 0.001). The mean KE was 1.1 mJ using the proposed method, 0.8 mJ using rigid registration (P < 0.001), 0.9 mJ using affine registration of the PC-MRCAs (P < 0.001), and 1.0 mJ using affine registration of segmentations (P = 0.028). The interpolation error was 5.2 ± 2.6% at mid-systole, 2.8 ± 3.8% at early diastole for peak KE; 9.6 ± 9.3% at mid-systole, 4.0 ± 4.6% at early diastole, and 4.9 ± 4.6% at late diastole for peak Hd. The mean KE and Hd were not affected by interpolation. Conclusion Hemodynamic atlases can be obtained with minimal user interaction using nonrigid registration of 4D Flow MRI. Level of Evidence: 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2017;46:1389–1399.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/jmri.25691

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.