2 years ago

Finite Assembly of Three‐Dimensional DNA Hierarchical Nanoarchitectures through Orthogonal and Directional Bonding

Yihao Zhou, Jinyi Dong, Chao Zhou, Qiangbin Wang
Reliable orthogonal bonding with precise and flexible orientation control would be ideal for building finite complex nanostructures via self-assembly. Employing a three-dimensional (3D) DNA origami, hexagonal prism DNA origami (HDO), as building block, we demonstrate it is practical to construct finite hierarchical nanoarchitectures with complicated conformations through orthogonal and directional bonding. The as-designed HDO building block has twelve prescribed directional valences in 3D space and each of them supports two opposite orientations, yielding the capability to generate abundant directional bonding. Meanwhile, we minimize the thorny non-specific interactions among HDOs and enable the orthogonal bonding between any two valences based on self-similar designing. Consequently, various hierarchical nanostructures are prepared at will simply by the combination of HDOs with appropriate valences. We believe this route towards hierarchically assembly is inspiring and hope it would facilitate the fabrication of functional superstructures.

Publisher URL: https://onlinelibrary.wiley.com/doi/10.1002/anie.202116416

DOI: 10.1002/anie.202116416

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.