4 years ago

A dual-axis rotation rule for updating the head direction cell reference frame during movement in three dimensions.

Wilson, Jeffery, Page
In the mammalian brain, allocentric (Earth-referenced) head direction, called azimuth, is encoded by head direction (HD) cells, which fire according to the facing direction of the animal's head. On a horizontal surface, rotations of the head around the dorso-ventral (D-V) axis, called yaw, correspond to changes in azimuth, and elicit appropriate updating of the HD 'compass' signal to enable large-scale navigation. However, if the animal moves through three-dimensional (3D) space then there is no longer a simple relationship between yaw rotations and azimuth changes, and so processing of three-dimensional rotations is needed. Construction of a global 3D compass would require complex integration of 3D rotations, and also a large neuronal population, most neurons of which would be silent most of the time since animals rarely sample all available 3D orientations. We propose that instead, the HD system treats the 3D space as a set of interrelated 2D surfaces. It could do this by updating activity according to both yaw rotations around the D-V axis and rotations of the D-V axis around the gravity-defined vertical axis. We present preliminary data to suggest that this rule operates when rats move between walls of opposing orientations. This dual-axis rule, which we show is straightforward to implement using the classic one-dimensional 'attractor' architecture, allows consistent representation of azimuth even in volumetric space, and thus may be a general feature of mammalian directional computations even for animals that swim or fly.

Publisher URL: http://doi.org/10.1152/jn.00501.2017

DOI: 10.1152/jn.00501.2017

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.