5 years ago

Ammonia Oxidation and Nitrite Reduction in the Verrucomicrobial Methanotroph Methylacidiphilum fumariolicum SolV.

Pol, Op den Camp, Mohammadi, van Alen, Jetten
The Solfatara volcano near Naples (Italy), the origin of the recently discovered verrucomicrobial methanotroph Methylacidiphilum fumariolicum SolV was shown to contain ammonium ([Formula: see text]) at concentrations ranging from 1 to 28 mM. Ammonia (NH3) can be converted to toxic hydroxylamine (NH2OH) by the particulate methane monooxygenase (pMMO), the first enzyme of the methane (CH4) oxidation pathway. Methanotrophs rapidly detoxify the intermediate NH2OH. Here, we show that strain SolV performs ammonium oxidation to nitrite at a rate of 48.2 nmol [Formula: see text].h(-1).mg DW(-1) under O2 limitation in a continuous culture grown on hydrogen (H2) as an electron donor. In addition, strain SolV carries out nitrite reduction at a rate of 74.4 nmol [Formula: see text].h(-1).mg DW(-1) under anoxic condition at pH 5-6. This range of pH was selected to minimize the chemical conversion of nitrite ([Formula: see text]) potentially occurring at more acidic pH values. Furthermore, at pH 6, we showed that the affinity constants (K s ) of the cells for NH3 vary from 5 to 270 μM in the batch incubations with 0.5-8% (v/v) CH4, respectively. Detailed kinetic analysis showed competitive substrate inhibition between CH4 and NH3. Using transcriptome analysis, we showed up-regulation of the gene encoding hydroxylamine dehydrogenase (haoA) cells grown on H2/[Formula: see text] compared to the cells grown on CH4/[Formula: see text] which do not have to cope with reactive N-compounds. The denitrifying genes nirk and norC showed high expression in H2/[Formula: see text] and CH4/[Formula: see text] grown cells compared to cells growing at μmax (with no limitation) while the norB gene showed downregulation in CH4/[Formula: see text] grown cells. These cells showed a strong upregulation of the genes in nitrate/nitrite assimilation. Our results demonstrate that strain SolV can perform ammonium oxidation producing nitrite. At high concentrations of ammonium this may results in toxic effects. However, at low oxygen concentrations strain SolV is able to reduce nitrite to N2O to cope with this toxicity.

Publisher URL: http://doi.org/10.3389/fmicb.2017.01901

DOI: 10.3389/fmicb.2017.01901

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.