4 years ago

High performance computation of landscape genomic models including local indicators of spatial association

M. R. Jones, S. Joost, B. R. Forester, P. Orozco-terWengel, E. Landguth, R. Negrini, P. Taberlet, M. W. Bruford, C. Masembe, L. Colli, S. Duruz, , S. Stucki
With the increasing availability of both molecular and topo-climatic data, the main challenges facing landscape genomics – that is the combination of landscape ecology with population genomics – include processing large numbers of models and distinguishing between selection and demographic processes (e.g. population structure). Several methods address the latter, either by estimating a null model of population history or by simultaneously inferring environmental and demographic effects. Here we present samβada, an approach designed to study signatures of local adaptation, with special emphasis on high performance computing of large-scale genetic and environmental data sets. samβada identifies candidate loci using genotype–environment associations while also incorporating multivariate analyses to assess the effect of many environmental predictor variables. This enables the inclusion of explanatory variables representing population structure into the models to lower the occurrences of spurious genotype–environment associations. In addition, samβada calculates local indicators of spatial association for candidate loci to provide information on whether similar genotypes tend to cluster in space, which constitutes a useful indication of the possible kinship between individuals. To test the usefulness of this approach, we carried out a simulation study and analysed a data set from Ugandan cattle to detect signatures of local adaptation with samβada, bayenv, lfmm and an FST outlier method (FDIST approach in arlequin) and compare their results. samβada – an open source software for Windows, Linux and Mac OS X available at http://lasig.epfl.ch/sambada – outperforms other approaches and better suits whole-genome sequence data processing.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1111/1755-0998.12629

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.