4 years ago

Optimization of non-thermal plasma efficiency in the simultaneous elimination of benzene, toluene, ethyl-benzene, and xylene from polluted airstreams using response surface methodology

Ahmad Hosseinzadeh, Hasan Bargozin, Ali Asghar Najafpoor, Reza Khani Jazani, Ahmad Jonidi Jafari


Treatment with a non-thermal plasma (NTP) is a new and effective technology applied recently for conversion of gases for air pollution control. This research was initiated to optimize the efficient application of the NTP process in benzene, toluene, ethyl-benzene, and xylene (BTEX) removal. The effects of four variables including temperature, initial BTEX concentration, voltage, and flow rate on the BTEX elimination efficiency were investigated using response surface methodology (RSM). The constructed model was evaluated by analysis of variance (ANOVA). The model goodness-of-fit and statistical significance was assessed using determination coefficients (R 2 and R 2 adj) and the F-test. The results revealed that the R 2 proportion was greater than 0.96 for BTEX removal efficiency. The statistical analysis demonstrated that the BTEX removal efficiency was significantly correlated with the temperature, BTEX concentration, voltage, and flow rate. Voltage was the most influential variable affecting the dependent variable as it exerted a significant effect (p < 0.0001) on the response variable. According to the achieved results, NTP can be applied as a progressive, cost-effective, and practical process for treatment of airstreams polluted with BTEX in conditions of low residence time and high concentrations of pollutants.

Publisher URL: https://link.springer.com/article/10.1007/s11356-017-0373-8

DOI: 10.1007/s11356-017-0373-8

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.