3 years ago

U enrichment and Th/U fractionation in Archean boninites: Implications for paleo-ocean oxygenation and U cycling at juvenile subduction zones

U enrichment and Th/U fractionation in Archean boninites: Implications for paleo-ocean oxygenation and U cycling at juvenile subduction zones
Phanerozoic boninites record enrichments of U over Th, giving Th/U 0.5-1.6, relative to intraoceanic island arc tholeiites (IAT) where Th/U averages 2.6. Uranium enrichment is attributed to incorporation of shallow, oxidized fluids, U-rich but Th-poor, from the slab into the melt column of boninites which form in near-trench to forearc settings of suprasubduction zone ophiolites. Well preserved Archean komatiite-tholeiite, plume-derived, oceanic volcanic sequences have primary magmatic Th/U ratios of 4.4-3.6, and Archean convergent margin IAT volcanic sequences, having REE and HFSE compositions similar to Phanerozoic IAT equivalents, preserve primary Th/U of 4-3.6. The best preserved Archean boninites of the 3.0 Ga Olondo and 2.7 Ga Gadwal greenstone belts, hosted in convergent margin ophiolite sequences, also show relative enrichments of U over Th, with low average Th/U ∼ 3 relative to coeval IAT, and Phanerozoic counterparts which are devoid of crustal contamination and therefore erupted in an intraoceanic setting, with minimal contemporaneous submarine hydrothermal alteration. Later enrichment of U is unlikely as Th-U-Nb-LREE patterns are coherent in these boninites whereas secondary effects induce dispersion of Th/U ratios. The variation in Th/U ratios from Archean to Phanerozoic boninites of greenstone belts to ophiolitic sequences reflect on genesis of boninitic lavas at different tectono-thermal regimes. Consequently, if the explanation for U enrichment in Phanerozoic boninites also applies to Archean examples, the implication is that U was soluble in oxygenated Archean marine water up to 600 Ma before the proposed great oxygenation event (GOE) at ∼ 2.4 Ga. This interpretation is consistent with large Ce anomalies in some hydrothermally altered Archean volcanic sequences aged 3.0-2.7 Ga.

Publisher URL: www.sciencedirect.com/science

DOI: S1367912017305643

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.