4 years ago

Cellulose-chitosan beads crosslinked by dialdehyde cellulose

Joon Weon Choi, Masahisa Wada, Hyeon Joo Kim, Ung-Jin Kim, Satoshi Kimura


Crosslinked cellulose-chitosan beads were obtained via dissolution-regeneration of cellulose and chitosan by a LiOH/urea aqueous solution, followed by the crosslinking of chitosan via dialdehyde cellulose (DAC). This crosslinking reaction involved the Schiff base formation between the aldehyde groups of DAC and the amino groups of chitosan and subsequent reduction. DAC was prepared through periodate oxidation of cellulose and solubilization in hot water at 100 °C for 1 h. Four grades of DAC-crosslinked cellulose-chitosan were prepared by controlling the amount of cellulose and chitosan. The DAC-crosslinked cellulose-chitosan showed higher stability in the pH range of 2–9 over a long-term 21-day test. Additionally, the DAC-crosslinked chitosan showed a higher bovine serum albumin adsorption capacity as a result of the increased amino group content due to the crosslinking between DAC and chitosan, which occurred at multiple points in spite of a lower degree in crosslinking.

Publisher URL: https://link.springer.com/article/10.1007/s10570-017-1528-y

DOI: 10.1007/s10570-017-1528-y

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.