5 years ago

Vaccine impact in homogeneous and age-structured models

F. M. G. Magpantay


A general model of an imperfect vaccine for a childhood disease is presented and the effects of different types of vaccine failure on transmission were investigated using models that consider both homogeneous and age-specific mixing. The models are extensions of the standard SEIR equations with an additional vaccinated component that allows for five different vaccine parameters: three types of vaccine failure in decreasing susceptibility to infection via failure in degree (“leakiness”), take (“all-or-nothingness”) and duration (waning of vaccine-derived immunity); one parameter reflecting the relative reduction in infectiousness of vaccinated individuals who get infected; and one parameter that reflects the relative reduction in reporting probability of vaccinated individuals due to a possible reduction in severity of symptoms. Only the first four parameters affect disease transmission (as measured by the basic reproduction number). The reduction in transmission due to vaccination is different for age-structured models than for homogeneous models. Notably, if the vaccine exhibits waning protection this could be larger for an age-structured model with high contact rates between young children who are still protected by the vaccine and lower contact rates between adults for whom protection might have already waned. Analytic expressions for age-specific “vaccine impacts” were also derived. The overall vaccine impact is bounded between the age-specific impact for the oldest age class and that of the youngest age class.

Publisher URL: https://link.springer.com/article/10.1007/s00285-017-1126-5

DOI: 10.1007/s00285-017-1126-5

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.