Pyruvate kinase activators as a therapy target: a patent review 2011-2017
Introduction: It is well known that cancer cells have an altered metabolism both to meet the energy needs and to provide initial molecules for the synthesis of macromolecules. To cope with the new metabolic state, different forms of certain enzymes are expressed in extreme amounts. These enzymes are seen as very attractive targets to deal with cancer. Pyruvate kinases isoenzyme M2 (PKM2) is a key enzyme that determines whether glucose is used for energy or synthesis of biosynthetic molecules. The dimeric form of PKM2 main form in several cancer cells serves the formation of synthetic precursors required for the cell growth and proliferation from glycolytic intermediates.
Areas covered: This article reviews appropriate publications on PKM2 activators from the points of view of synthesis and biological activities between 2011–2017. Herein, based on the chemical structure, PKM2 activators are classified into sulfonamide, phenolic, carboxamide and pyridopyrimidinone derivatives.
Expert opinion: PKM2 activation inhibits cell growth and proliferation by decreasing a number of biomolecules required for cell building. Therefore; PKM2 activators are considered as an ideal drug for or the treatment of many cancer pathogens. It is necessary to discover new, more active and selective compounds for PKM2 activation.
Publisher URL: http://www.tandfonline.com/doi/full/10.1080/13543776.2018.1391218
DOI: 10.1080/13543776.2018.1391218
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.