3 years ago

Mitochondria Alkylation and Cellular Trafficking Mapped with a Lipophilic BODIPY–Acrolein Fluorogenic Probe

Mitochondria Alkylation and Cellular Trafficking Mapped with a Lipophilic BODIPY–Acrolein Fluorogenic Probe
Sheena Louisia, Lana E. Greene, Richard Lincoln, Wenzhou Zhang, Gonzalo Cosa
Protein and DNA alkylation by endogenously produced electrophiles is associated with the pathogenesis of neurodegenerative diseases, to epigenetic alterations and to cell signaling and redox regulation. With the goal of visualizing, in real-time, the spatiotemporal response of the cell milieu to electrophiles, we have designed a fluorogenic BODIPY–acrolein probe, AcroB, that undergoes a >350-fold fluorescence intensity enhancement concomitant with protein adduct formation. AcroB enables a direct quantification of single post-translational modifications occurring on cellular proteins via recording fluorescence bursts in live-cell imaging studies. In combination with super-resolution imaging, protein alkylation events may be registered and individually counted, yielding a map of protein–electrophile reactions within the cell lipid milieu. Alkylation is predominantly observed within mitochondria, a source, yet not a sink, of AcroB adducts, illustrating that a mitochondrial constitutive excretion mechanism ensures rapid disposal of compromised proteins. Sorting within the Golgi apparatus and trafficking along microtubules and through the cell endo- and exocytic pathways can be next visualized via live-cell imaging. Our results offer a direct visualization of cellular response to a noncanonical acrolein warhead. We envision AcroB will enable new approaches for diagnosis of pathologies associated with defective cellular trafficking. AcroB may help elucidate key aspects of mitochondria electrophile adduct excretion and cell endocytic and exocytic pathways. Conceptually, AcroB provides a new paradigm on fluorescence microscopy studies where chemical perturbation is achieved and simultaneously reported by the probe.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b08615

DOI: 10.1021/jacs.7b08615

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.